Prepared for Dynegy Midwest Generation, LLC

Date January 31, 2021

Project No. 1940074914

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BALDWIN BOTTOM ASH POND, BALDWIN ENERGY COMPLEX

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BALDWIN BOTTOM ASH POND, BALDWIN ENERGY COMPLEX

Project name	Baldwin Energy Complex
Project no.	1940074914
Recipient	Dynegy Midwest Generation, LLC
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2021
Prepared by	Kristen L. Theesfeld
Checked by	Jacob J. Walczak, PG
Approved by	Lauren D. Cook
Description	Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Kristen L. Theesfeld Hydrogeologist

Jacob J. Walczak, PG Senior Hydrogeologist

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2020	7
4.	Problems Encountered and Actions to Resolve the Problems	9
5.	Key Activities Planned for 2021	10
6.	References	11

TABLES (IN TEXT)

 Table A
 2019-2020 Assessment Monitoring Program Summary

TABLES (ATTACHED)

- Table 1
 Analytical Results Groundwater Elevation and Appendix III Parameters
- Table 2
 Analytical Results Appendix IV Parameters
- Table 3Statistical Background Values
- Table 4 Groundwater Protection Standards

FIGURES

Figure 1 Monitoring Well Location Map

APPENDICES

Appendix A Alternate Source Demonstrations

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
BAP	Bottom Ash Pond
CCR	Coal Combustion Residuals
CMA	Corrective Measures Assessment
GWPS	Groundwater Protection Standard
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

•

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for Baldwin Bottom Ash Pond (BAP) located at Baldwin Energy Complex near Baldwin, Illinois.

Groundwater is being monitored at Baldwin BAP in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95. Assessment Monitoring was initiated at Baldwin BAP on April 9, 2018.

No changes were made to the monitoring system in 2020.

The following Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined in 2020:

• Lithium at well MW-370

Alternate Source Demonstrations (ASDs) were completed for the SSLs referenced above. Consequently, a Corrective Measures Assessment (CMA) is not required and Baldwin BAP remains in the Assessment Monitoring Program.

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions Inc. (Ramboll) on behalf of Dynegy Midwest Generation, LLC, to provide the information required by 40 C.F.R.§ 257.90(e) for Baldwin BAP located at Baldwin Energy Complex near Baldwin, Illinois.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase [SSI] relative to background levels).
- 5. Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - iii. If it was determined that there was a SSI over background for one or more constituents listed in Appendix III of §257 pursuant to §257.94(e):
 - A. Identify those constituents listed in Appendix III of §257 and the names of the monitoring wells associated with the SSI(s).

- B. Provide the date when the assessment monitoring program was initiated for the CCR unit.
- iv. If it was determined that there was a SSL above the Groundwater Protection Standard (GWPS) for one or more constituents listed in Appendix IV of §257 pursuant to §257.95(g) include all of the following:
 - A. Identify those constituents listed in Appendix IV of §257 and the names of the monitoring wells associated with the SSL(s).
 - B. Provide the date when the CMA was initiated for the CCR unit.
 - C. Provide the date when the public meeting was held for CMA for the CCR unit.
 - D. Provide the date when the CMA was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

This report provides the required information for Baldwin BAP for calendar year 2020.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the Monitoring Program status in calendar year 2020, and Baldwin BAP remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.95.

3. KEY ACTIONS COMPLETED IN 2020

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2020. In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (NRT/OBG, 2017a). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2020, and analytical results for the September 2019 sampling event, are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017b) to determine any SSLs of Appendix IV parameters over GWPSs. Notifications were completed in accordance with 40 C.F.R. § 257.95(g).

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Potential alternate sources were evaluated as outlined in the 40 C.F.R. § 257.95(g)(3)(ii). ASDs were completed and certified by a qualified professional engineer. The dates the ASDs were completed are provided in Table A. The ASDs are included in Appendix A.

Table A – 2019-2020 Assessment Monitoring Program Summary

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s)	SSL(s) Determination Date	ASD Completion Date
September 24 - 25, 2019	October 24, 2019	Appendix III			
		Appendix IV Detected ¹	Lithium at well MW-370	January 22, 2020	April 21, 2020
March 25 - 26, 2020	April 28, 2020	Appendix III			
		Appendix IV	Lithium at well MW-370	July 27, 2020	October 26, 2020
September 15 - 17, 2020	October 19, 2020	Appendix III			
		Appendix IV Detected 1	ТВД	TBD	TBD

Notes:

NA: Not Applicable

TBD: To Be Determined

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2020. Groundwater samples were collected and analyzed in accordance with the Sampling and Analysis Plan (NRT/OBG, 2017a), and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2021

The following key activities are planned for 2021:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2021.
- Complete evaluation of analytical data from the downgradient wells, using GWPSs to determine whether an SSL of Appendix IV parameters has occurred.
- If an SSL is identified, potential alternate sources (*i.e.*, a source other than the CCR unit caused the SSL or that that SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternate source is demonstrated to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the 2021 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSL, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 (*e.g.*, assessment of corrective measures) as may apply in 2021 will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a. Sampling and Analysis Plan, Baldwin Bottom Ash Pond, Baldwin Energy Complex, Baldwin, Illinois, Project No. 2285, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b. Statistical Analysis Plan, Baldwin Energy Complex, Havana Power Station, Hennepin Power Station, Wood River Power Station, Dynegy Midwest Generation, LLC, October 17, 2017.

TABLES

TABLE 1.ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTBALDWIN ENERGY COMPLEY

BALDWIN ENERGY COMPLEX 601 - BOTTOM ASH POND BALDWIN, IL

Well ID	Latitude (Decimal	Longitude (Decimal	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft NAVD88)	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
	Degrees)	Degrees)		6020A	6020A	6020A	6020A	9251	9214	SM4500 H+B	9036	SM 2540C
			9/25/2019	9.3	446.19	1.84	18.4	152	1.74	7.9	169	1350
			3/24/2020	9.56	445.93							
MW-304 Background	38.188332	-89.853441	3/26/2020			1.66	17.2	153	1.81	7.9	177	1320
			9/15/2020	9.97	445.52							
			9/17/2020			1.89	15.3	161	1.79	8.0	196	1320
			9/25/2019	18.1	435.07	0.166	46	62	0.59	11.0	37	318
			3/24/2020	17.31	435.86							
MW-306 Background	38.20114	-89.846756	3/26/2020			0.18	43.1	63	0.6	11.5	37	288
			9/15/2020	17.75	435.42							
			9/17/2020			0.174	26.9	58	0.56	10.5	37	224
			9/24/2019	3.02	424.58	2.04	11.6	29	2	7.7	38	644
MW-356	38.198963	-89.869578	3/24/2020	3.23	424.37							
Downgradient	30.190903	-89.809578	3/25/2020			1.94	12.2	29	2.01	7.9	43	654
			9/15/2020	3.62	423.98	2.09	11.4	32	2.02	7.8	45	660
			9/24/2019	13.1	409.61	0.948	85	101	1.08	6.7	90	788
MW-369	38.196986	-89.870258	3/24/2020	7.65	415.06							
Downgradient	30.190900	-89.870238	3/25/2020			0.714	92.3	94	0.95	7.1	92	726
			9/15/2020	17.62	405.09	0.683	88.5	105	0.97	7.1	91	756
			9/24/2019	18.98	401.87	1.95	47	1290	3	7.5	237	2830
MW-370	38.195603	-89.869669	3/24/2020	17.56	403.29							
Downgradient	30.193003	-89.809009	3/25/2020			1.79	44.5	1340	3.19	7.7	251	2880
			9/15/2020	18.92	401.93	1.97	43.4	1470	3.05	7.5	263	3040
			9/24/2019	16.23	414.96	1.78	20.5	34	2.85	7.7	388	1150
MW-382	38.19454	-89.868044	3/24/2020	15.79	415.4							
Downgradient	30.19434	-09.000044	3/25/2020			1.75	19.7	34	3.04	7.9	415	1100
			9/15/2020	16.5	414.69	1.75	18.8	32	2.8	7.8	415	1090

TABLE 1.ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTBALDWIN ENERGY COMPLEX

601 - BOTTOM ASH POND BALDWIN, IL

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations ft = foot/feet mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.</p>

4-digit numbers below parameter represent SW-846 analytical methods and alpha-numeric values that begin with SM represent Standard Methods for the Examination of Water and Wastewater.

TABLE 2. ANALYTICAL RESULTS - APPENDIX IV PARAMETERS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BALDWIN ENERGY COMPLEX

601 - BOTTOM ASH POND BALDWIN, IL

Well ID	Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium 228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
		6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	7470A	6020A	6020A	6020A	6020A
	9/25/2019	<0.001	0.0017	0.0211	<0.001	<0.001	<0.0015	<0.001	1.74	<0.001	0.0836	<0.0002	0.0017	0.42	<0.001	<0.002
MW-304 Background	3/26/2020	<0.001	0.0016	0.0212	<0.001	<0.001	<0.0015	<0.001	1.81	<0.001	0.0782	<0.0002	0.0015	0.95	<0.001	<0.002
background .	9/17/2020	<0.001	0.0024	0.0192			<0.0015	< 0.001	1.79	<0.001	0.091		0.0019	0.37	<0.001	
	9/25/2019	<0.001	0.0021	0.015	<0.001	<0.001	<0.0015	<0.001	0.59	<0.001	0.0133	<0.0002	0.0267	0.36	<0.001	<0.002
MW-306 Background	3/26/2020	<0.001	0.0023	0.0163	<0.001	<0.001	<0.0015	<0.001	0.6	<0.001	0.0132	<0.0002	0.0269	1.08	<0.001	<0.002
Duckground	9/17/2020	<0.001	0.002	0.0124			<0.0015	<0.001	0.56	<0.001	0.0143		0.0262	1.59	<0.001	
	9/24/2019		<0.001	0.0307			<0.0015		2		0.058		<0.0015	0.1		
MW-356 Downgradient	3/25/2020	<0.001	<0.001	0.0303	<0.001	<0.001	<0.0015	<0.001	2.01	<0.001	0.0529	<0.0002	<0.0015	2.18	<0.001	<0.002
2 offing a dicine	9/15/2020	<0.001	<0.001	0.0291			<0.0015	<0.001	2.02	<0.001	0.0579		<0.0015	1.08	<0.001	
	9/24/2019		0.0059	0.0849			<0.0015		1.08		0.0259		0.0186	0.84		
MW-369 Downgradient	3/25/2020	<0.001	0.0028	0.0918	<0.001	<0.001	<0.0015	< 0.001	0.95	<0.001	0.0182	<0.0002	0.0113	1.72	<0.001	<0.002
2 offing a dicine	9/15/2020	<0.001	0.0018	0.0894			<0.0015	0.0033	0.97	<0.001	0.0212		0.0092	1.2	<0.001	
	9/24/2019		<0.001	0.0424			<0.0015		3		0.149		0.0188	0.75		
MW-370 Downgradient	3/25/2020	<0.001	<0.001	0.0421	<0.001	<0.001	<0.0015	<0.001	3.19	<0.001	0.132	<0.0002	0.018	2.01	<0.001	<0.002
Downgradiene	9/15/2020	<0.001	<0.001	0.0377			<0.0015	<0.001	3.05	<0.001	0.151		0.0157	0.95	<0.001	
	9/24/2019		0.0012	0.0221			0.0044		2.85		0.0623		0.0025	0.51		
MW-382 Downgradient	3/25/2020	<0.001	0.0014	0.0196	<0.001	<0.001	0.0028	<0.001	3.04	<0.001	0.0561	<0.0002	0.0021	2.33	<0.001	<0.002
Jongiauent	9/15/2020	<0.001	<0.001	0.0158			0.0032	<0.001	2.8	<0.001	0.064		0.0033	0.23	<0.001	

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations mg/L = milligrams per liter

NA = Not Analyzed

pCi/L = picoCuries per liter

< = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine</p> Statistically Significant Levels (SSLs) over Groundwater Protection Standards.

4-digit numbers below parameter represent SW-846 analytical methods and 3-digit numbers represent Clean Water Act analytical methods.

TABLE 3. STATISTICAL BACKGROUND VALUES 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BALDWIN ENERGY COMPLEX 601 - BOTTOM ASH POND

BALDWIN, ILLINOIS ASSESSMENT MONITORING PROGRAM

Parameter	Statistical Background Value (UPL)				
40 C.F.R. Part 257 A	ppendix III				
Boron (mg/L)	1.84				
Calcium (mg/L)	60.5				
Chloride (mg/L)	153				
Fluoride (mg/L)	1.88				
pH (S.U.)	7.4 / 11.5				
Sulfate (mg/L)	208				
Total Dissolved Solids (mg/L)	1420				

[O: RAB 7/6/2020, C: MIK 9/9/2020]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit

Barrin

TABLE 4. GROUNDWATER PROTECTION STANDARDS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BALDWIN ENERGY COMPLEX 601 - BOTTOM ASH POND

BALDWIN, ILLINOIS ASSESSMENT MONITORING PROGRAM

Parameter	Groundwater Protection Standard ¹					
40 C.F.R. Part 25	7 Appendix IV					
Antimony (mg/L)	0.006					
Arsenic (mg/L)	0.010					
Barium (mg/L)	2					
Beryllium (mg/L)	0.004					
Cadmium (mg/L)	0.005					
Chromium (mg/L)	0.10					
Cobalt (mg/L)	0.006					
Fluoride (mg/L)	4					
Lead (mg/L)	0.015					
Lithium (mg/L)	0.0958					
Mercury (mg/L)	0.002					
Molybdenum (mg/L)	0.10					
Radium 226+228 (pCi/L)	5					
Selenium (mg/L)	0.05					
Thallium (mg/L)	0.002					

[O: RAB 7/6/2020, C: MIK 9/9/2020]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

pCi/L = picoCuries per liter

 $^1 \rm Groundwater$ Protection Standard is the higher of the Maximum Contaminant Level /

Health-Based Level or background.

FIGURES

- DOWNGRADIENT MONITORING WELL LOCATION
- BACKGROUND MONITORING WELL LOCATION
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP BALDWIN BOTTOM ASH POND UNIT ID:601

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VISTRA CCR RULE GROUNDWATER MONITORING BALDWIN ENERGY COMPLEX BALDWIN, ILLINOIS

400 800

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDICES

Intended for
Dynegy Midwest Generation, LLC

Date April 21, 2020

Project No. **74914**

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION BALDWIN BOTTOM ASH POND

CERTIFICATIONS

I, Jacob J. Walczak, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Professional Geologist 196-001473 Illinois O'Brien & Gere Engineers, Inc., a Ramboll Company Date: April 21, 2020

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer 062-063091 Illinois O'Brien & Gere Engineers, Inc., a Ramboll Company Date: April 21, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Alternate Source Demonstration: Lines of Evidence	4
2.1	LOE #1: Lithium Concentrations in the BAP Porewater are Lower	
	Than the Concentrations Observed in Downgradient Groundwater.	4
2.2	LOE #2: The BAP Porewater has a Different Ionic Composition	
	Than Groundwater.	5
3.	Conclusions	7
4.	References	8

TABLES (IN TEXT)

Table ASummary Statistics for Lithium in Groundwater and BAP Porewater (December 2015 to
September 2019).

FIGURES (IN TEXT)

Figure AStiff Diagram Showing Ionic Composition of Samples of BAP Background and
Downgradient Groundwater and BAP Porewater.

FIGURES (ATTACHED)

Figure 1 Monitoring Well and Bottom Ash Pond Water Sample Location Map

APPENDICES

Appendix A Boring Log for Porewater Well TPZ-164

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
BAP	Bottom Ash Pond
CCR	Coal Combustion Residuals
DMG	Dynegy Midwest Generation, LLC
GWPS	Groundwater Protection Standard
LOE	line of evidence
mg/L	milligrams per liter
NRT/OBG	Natural Resource Technology, an OBG Company
Ramboll	O'Brien & Gere Engineers, Inc., a Ramboll Company
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

Barnin

1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Baldwin Bottom Ash Pond (BAP) located near Baldwin, Illinois.

The most recent Assessment Monitoring sampling event (A2D) was completed on September 24 and September 25, 2019 and analytical data were received on October 24, 2019. Analytical data from all sampling events, from December 2015 through A2D, were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL at downgradient monitoring wells as follows:

• Lithium at well MW-370

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Baldwin BAP were the cause of the lithium SSL listed above. This ASD was completed by April 21, 2020, within 90 days of determination of the SSLs (January 22, 2020), as required by 40 C.F.R. § 257.95(g)(3)(ii).

2. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following lines of evidence (LOEs):

- 1. Lithium concentrations in the BAP porewater are lower than the concentrations observed in downgradient groundwater.
- 2. The BAP porewater has a different ionic composition than groundwater.

These LOEs are described and supported in greater detail below. Monitoring wells and the BAP porewater sample locations are shown Figure 1.

2.1 LOE #1: Lithium Concentrations in the BAP Porewater are Lower Than the Concentrations Observed in Downgradient Groundwater.

The table below (Table A) provides summary statistics of groundwater lithium concentrations and BAP porewater lithium concentrations collected from TPZ-164 bottom ash porewater well (see boring log in Attachment A).

Table A – Summary Statistics for Lithium in Groundwater and BAP Porewater (December 2015 toSeptember 2019).

Sample Location	Lithium (mg/L)								
Sample Location	Minimum	Maximum	Median						
Background Groundwater ¹	0.013	0.096	0.046						
Downgradient Groundwater ²	0.023	0.18	0.058						
BAP Porewater ³	0.014	0.018	not reported ⁴						

Note:

¹Background groundwater was collected at monitoring wells MW-304 and MW-306.

²Downgradient groundwater was collected at monitoring wells MW-356, MW-369, MW-370 and MW-382.

³BAP porewater was collected at TPZ-164.

⁴Only two samples were collected, one sample in September 2018 and one sample in June 2019, and analyzed for lithium from TPZ-164 during the monitoring period, therefore the median is not reported.

The following observations can be made from Table A above:

- Concentrations of lithium in background wells ranged from 0.013 to 0.096 milligrams per liter (mg/L), with a median concentration of 0.046 mg/L.
- Concentrations of lithium in downgradient wells ranged from 0.023 to 0.18 mg/L, with a median concentration of 0.058 mg/L.
- Concentrations of lithium in BAP porewater ranged from 0.014 to 0.018 mg/L. These levels of lithium are below the maximum and median lithium concentrations detected in background groundwater monitoring wells, and below the lower end of the range of lithium concentrations detected in all downgradient groundwater monitoring wells.

If the BAP was the source of lithium in downgradient groundwater, BAP porewater concentrations of lithium would be anticipated to be higher than the groundwater concentrations. Therefore, the BAP is not the source of the lithium in the downgradient groundwater, including at MW-370. Background lithium concentrations were also shown to be higher than BAP porewater, suggesting

lithium concentrations are either naturally occurring due to geochemical variations within the Uppermost Aquifer or from upgradient anthropogenic sources.

2.2 LOE #2: The BAP Porewater has a Different Ionic Composition Than Groundwater.

Stiff diagrams graphically represent ionic composition of aqueous solutions. Figure A below shows a series of Stiff diagrams that display the ionic compositions of groundwater from background monitoring wells (brown), downgradient monitoring wells (blue) and the BAP porewater (green). Polygons with similar shapes represent solutions with similar ionic compositions, whereas polygons with different shapes indicate solutions with dissimilar ionic compositions; the larger the area of the polygon, the greater the concentration of the various ions.

The ionic compositions of the groundwater and BAP porewater represented by Figure A are discussed in more detail below.

- The ionic composition of the groundwater in background and downgradient monitoring wells is similar with some exceptions, as represented by the similarity of the Stiff diagram sizes and shapes.
 - The dominant cations in groundwater monitoring wells (background and downgradient) are sodium-potassium and the dominant anions are bicarbonate-carbonate. The exceptions are MW-370, which has chloride as the dominant anion, and MW-306, which has no dominant anion.
- The dominant cation in the BAP porewater sample is calcium and the dominant anion is bicarbonate-carbonate.

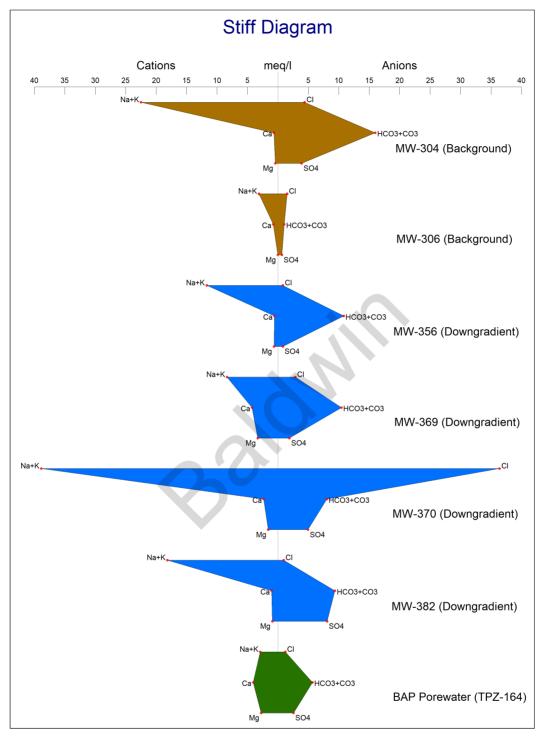


Figure A. Stiff Diagram Showing Ionic Composition of Samples of BAP Background (Brown) and Downgradient (Blue) Groundwater and BAP Porewater (Green).

The ionic composition of the BAP porewater is different than the ionic composition of the groundwater, thus the groundwater at MW-370 is not influenced by the BAP.

3. CONCLUSIONS

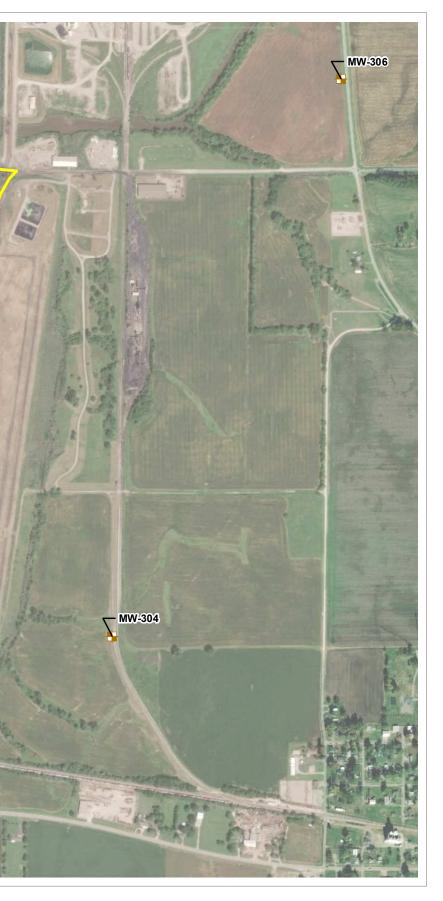
Based on the following two lines of evidence, it has been demonstrated that the lithium SSL at MW-370 is not due to the Baldwin BAP but is from a source other than the CCR unit being monitored:

- 1. Lithium concentrations in the BAP porewater are lower than the concentrations observed in downgradient groundwater.
- 2. The BAP porewater has a different ionic composition than groundwater.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the A2D sampling event was not due to the BAP. Therefore, a corrective measures assessment is not required and the Baldwin BAP will remain in assessment monitoring.

4. **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Baldwin Energy Complex, Havana Power Station, Hennepin Power Station, Wood River Power Station, Dynegy Midwest Generation, LLC, October 17, 2017.


FIGURES

BOTTOM ASH POND DOWNGRADIENT CCR MONITORING WELL LOCATION

- BOTTOM ASH POND BACKGROUND CCR MONITORING WELL LOCATION
- BOTTOM ASH POND POREWATER SAMPLE LOCATION
- BOTTOM ASH POND UNIT BOUNDARY

800 Foot MONITORING WELL AND BOTTOM ASH POND

FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY

WATER SAMPLE LOCATION MAP

BALDWIN BOTTOM ASH POND (UNIT ID: 601) ALTERNATE SOURCE DEMONSTRATION BALDWIN ENERGY COMPLEX BALDWIN, ILLINOIS

APPENDIX A BORING LOG FOR POREWATER WELL TPZ-164

Balawill

	KELRON ENVIRONMENTAL Incorporated		L	OG	OF	F PR	OB	EHO	OLE TPZ-164 (Page 1 of 1)	
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed : 08/26/2013 Hole Diameter : 8 1/2" OD / 4 1/4" ID Drilling Method : HSA (CME-55LC) Sampling Method : Split Spoon / Shelby Tube Drilling Company : Bulldog Drilling, LLC					Driller : John Gates Geologist : Stuart Cravens (Kel Ground Elevation : 432.50 Casing (MP) Elevation : 435.10 X,Y Coordinates : 2383909, 556829			
Depth in Feet	DESCRIPTION		Surf. Elev. 432.50	Samples	Blow Count	Recovery inches	Qp TSF	NSCS	Well: TPZ-164 Elev.: 435.10	
0	FILL - Bottom Ash, coarse, black (10YR 2	2/1), dry								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- moist <shelby 3-5<br="" @="" sample="" st164-5="" tube="">grain size analysis (Ash): 50% Sand, 42.9% Silt, 7.1% Clay - wet</shelby>	6	- 430 - 429 - 428 - 427 - 426 - 425 - 424		3	17/24		AR	- Seal Bentonite Chips - Riser (Sch 40 PVC)	
9	 CLAY (lean), stiff, medium to high plastic (10YR 4/1), moist - @8.9' - light yellowish brown (10YR light gray mottling - @9.3' - gray (10YR 6/1) with 25-50% brownish-yellow mottling (10YR 6/6) 	6/4) with <10%	- 423	2	3 5	18/18		CL	Bottom Cap	
	- light olive brown <shelby 1<br="" @="" sample="" st164-12="" tube="">grain size analysis: 7.2% Sand, 62.2% Silt, 30.6% Clay</shelby>	0-12'>	- 422	3		23/24		CL	-Seal Bentonite Chips	
	END BOREHOLE AT 10.3 FEET BLS END Split-Spoon Sampling at 12 feet BL	S	- 421							

- 420

11-08-2013 C:\Consulting AlPower Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC164.BOR

Intended for
Dynegy Midwest Generation, LLC

Date October 26, 2020

Project No. 1940074914

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION BALDWIN BOTTOM ASH POND

CERTIFICATIONS

I, Jacob J. Walczak, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Professional Geologist 196-001473 Illinois Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

ERIC J. TLACHAC 062-063091 Eric J. Tlachac Qualified Professional Engineer 062-063091 Illinois Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

Introduction	3
Alternate Source Demonstration: Lines of Evidence	4
LOE #1: The Median Lithium Concentration in the BAP Porewater	
is Lower Than Median Concentrations Observed in Background and	
Downgradient Groundwater.	4
LOE #2: The BAP Porewater has a Different Ionic Composition	
Than Groundwater.	5
Conclusions	7
References	8
	Alternate Source Demonstration: Lines of Evidence LOE #1: The Median Lithium Concentration in the BAP Porewater is Lower Than Median Concentrations Observed in Background and Downgradient Groundwater. LOE #2: The BAP Porewater has a Different Ionic Composition Than Groundwater. Conclusions

TABLES (IN TEXT)

Table ASummary Statistics for Lithium in Groundwater and BAP Porewater (December 2015 to
March 2020).

۲

FIGURES (IN TEXT)

Figure A Stiff Diagram Showing Ionic Composition of Samples of BAP Background and Downgradient Groundwater and BAP Porewater.

FIGURES (ATTACHED)

Figure 1 Monitoring Well and Bottom Ash Pond Water Sample Location Map

APPENDICES

Appendix A Boring Log for Porewater Well TPZ-164

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
BAP	Bottom Ash Pond
CCR	Coal Combustion Residuals
DMG	Dynegy Midwest Generation, LLC
f/k/a	formerly known as
GWPS	Groundwater Protection Standard
LOE	line of evidence
mg/L	milligrams per liter
NRT/OBG	Natural Resource Technology, an OBG Company
Ramboll	Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

Bardin

1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Baldwin Bottom Ash Pond (BAP) located near Baldwin, Illinois.

The most recent Assessment Monitoring sampling event (A3) was completed on March 26, 2020 and analytical data were received on April 28, 2020. Analytical data from all sampling events, from December 2015 through A3, were evaluated in accordance with the Statistical Analysis Plan (Natural Resource Technology, an OBG Company [NRT/OBG], 2017) to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL at downgradient monitoring wells as follows:

• Lithium at well MW-370

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence (LOEs) demonstrate that sources other than the Baldwin BAP were the cause of the lithium SSL listed above. This ASD was completed by October 26, 2020, within 90 days of determination of the SSLs (July 27, 2020), as required by 40 C.F.R. § 257.95(g)(3)(ii).

2. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following LOEs:

- 1. The median lithium concentration in the BAP porewater is lower than the median concentrations observed in background and downgradient groundwater.
- 2. The BAP porewater has a different ionic composition than groundwater.

These LOEs are described and supported in greater detail below. Monitoring wells and the BAP porewater sample locations are shown Figure 1.

2.1 LOE #1: The Median Lithium Concentration in the BAP Porewater is Lower Than Median Concentrations Observed in Background and Downgradient Groundwater.

The table below (Table A) provides summary statistics of groundwater lithium concentrations and BAP porewater lithium concentrations collected from TPZ-164 bottom ash porewater well (see boring log in Attachment A).

Table A – Summary Statistics for Lithium in Groundwater and BAP Porewater (December 2015 toMarch 2020).

Sample Location	Lithium (milligrams per liter [mg/L])								
Sample Location	Minimum	Maximum	Median						
Background Groundwater ¹	0.013	0.096	0.046						
Downgradient Groundwater ²	0.018	0.18	0.058						
BAP Porewater ³	0.013	0.018	0.014						

Note:

¹Background groundwater was collected at monitoring wells MW-304 and MW-306.

²Downgradient groundwater was collected at monitoring wells MW-356, MW-369, MW-370 and MW-382. ³BAP porewater was collected at TPZ-164.

The following observations can be made from Table A above:

- Concentrations of lithium in background wells ranged from 0.013 to 0.096 mg/L, with a median concentration of 0.046 mg/L.
- Concentrations of lithium in downgradient wells ranged from 0.018 to 0.18 mg/L, with a median concentration of 0.058 mg/L.
- Concentrations of lithium in BAP porewater ranged from 0.013 to 0.018 mg/L, with a median concentration of 0.014 mg/L. The median lithium concentration observed in porewater is below the median lithium concentrations observed in both background and downgradient groundwater monitoring wells.

If the BAP was the source of lithium in downgradient groundwater, BAP porewater concentrations of lithium would be anticipated to be higher than the groundwater concentrations. Therefore, the BAP is not the source of lithium in the downgradient groundwater, including at MW-370. Background lithium concentrations were also shown to be higher than BAP porewater, suggesting

lithium concentrations are either naturally occurring due to geochemical variations within the Uppermost Aquifer or from upgradient anthropogenic sources.

2.2 LOE #2: The BAP Porewater has a Different Ionic Composition Than Groundwater.

Stiff diagrams graphically represent ionic composition of aqueous solutions. Figure A below shows a series of Stiff diagrams that display the ionic compositions of groundwater from background monitoring wells (brown), downgradient monitoring wells (blue), and the BAP porewater (green). Polygons with similar shapes represent solutions with similar ionic compositions, whereas polygons with different shapes indicate solutions with dissimilar ionic compositions; the larger the area of the polygon, the greater the concentration of the various ions.

The ionic compositions of the groundwater and BAP porewater represented by Figure A are discussed in more detail below.

- The ionic composition of the groundwater in downgradient monitoring wells is similar to that in background monitoring well MW-304, with one exception, as represented by the similarity of the Stiff diagram sizes and shapes.
 - The dominant cations in downgradient groundwater monitoring wells and background monitoring well MW-304 are sodium-potassium and the dominant anions are bicarbonate-carbonate. The exception is MW-370, which has chloride as the dominant anion.
- The BAP porewater sample has no dominant cation and the dominant anion is bicarbonate-carbonate.

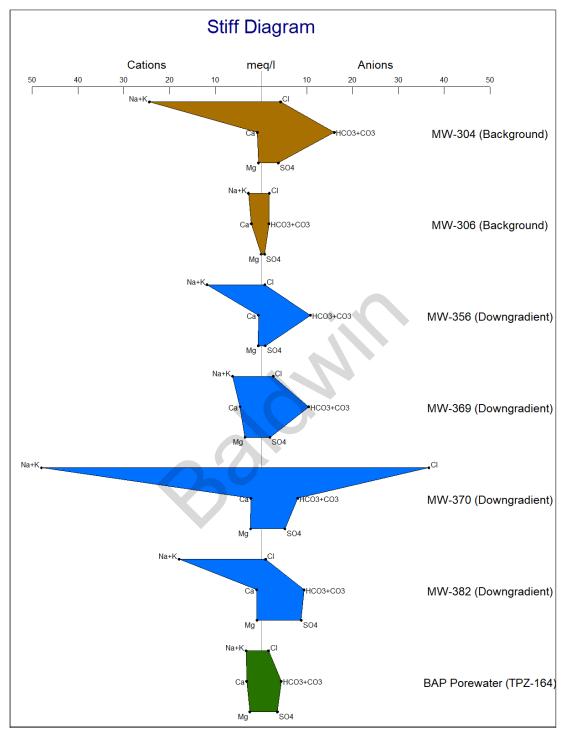


Figure A. Stiff Diagram Showing Ionic Composition of Samples of BAP Background (Brown) and Downgradient Groundwater (Blue) and BAP Porewater (Green).

The ionic composition of the BAP porewater is different than the ionic composition of the groundwater, thus the groundwater at MW-370 is not influenced by the BAP.

3. CONCLUSIONS

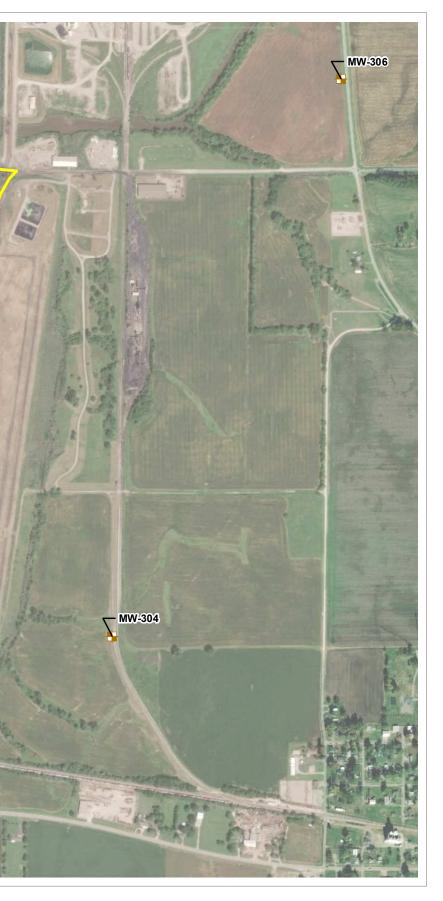
Based on the following two LOEs, it has been demonstrated that the lithium SSL at MW-370 is not due to the Baldwin BAP but is from a source other than the CCR unit being monitored:

- 1. The median lithium concentration in the BAP porewater is lower than the median concentrations observed in background and downgradient groundwater.
- 2. The BAP porewater has a different ionic composition than groundwater.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the A3 sampling event was not due to the BAP. Therefore, a corrective measures assessment is not required, and the Baldwin BAP will remain in assessment monitoring.

4. **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Baldwin Energy Complex, Havana Power Station, Hennepin Power Station, Wood River Power Station, Dynegy Midwest Generation, LLC, October 17, 2017.


FIGURES

BOTTOM ASH POND DOWNGRADIENT CCR MONITORING WELL LOCATION

- BOTTOM ASH POND BACKGROUND CCR MONITORING WELL LOCATION
- BOTTOM ASH POND POREWATER SAMPLE LOCATION
- BOTTOM ASH POND UNIT BOUNDARY

800 Foot MONITORING WELL AND BOTTOM ASH POND

FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY

WATER SAMPLE LOCATION MAP

BALDWIN BOTTOM ASH POND (UNIT ID: 601) ALTERNATE SOURCE DEMONSTRATION BALDWIN ENERGY COMPLEX BALDWIN, ILLINOIS

APPENDIX A BORING LOG FOR POREWATER WELL TPZ-164

Balawill

	KELRON ENVIRONMENTAL Incorporated		L	OG	OF	F PR	OB	EHO	OLE TPZ-164 (Page 1 of 1)	
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 1 : HS : Sp	/26/20 1/2" OE SA (CM olit Spor Illdog E	0 / 4 1 IE-55 on / S	LC) Shelby 1	ſube		Driller : John Gates Geologist : Stuart Cravens (Kel Ground Elevation : 432.50 Casing (MP) Elevation : 435.10 X,Y Coordinates : 2383909, 556829	lron)
Depth in Feet	DESCRIPTION		Surf. Elev. 432.50	Samples	Blow Count	Recovery inches	Qp TSF	NSCS	Well: TPZ-164 Elev.: 435.10	
0	FILL - Bottom Ash, coarse, black (10YR 2	2/1), dry								
	- moist <shelby 3-5<br="" @="" sample="" st164-5="" tube="">grain size analysis (Ash): 50% Sand, 42.9% Silt, 7.1% Clay - wet</shelby>	6	- 430 - 429 - 428 - 427 - 426 - 425 - 424		3	17/24		AR	- Seal Bentonite Chips - Riser (Sch 40 PVC)	
9	 CLAY (lean), stiff, medium to high plastic (10YR 4/1), moist - @8.9' - light yellowish brown (10YR light gray mottling - @9.3' - gray (10YR 6/1) with 25-50% brownish-yellow mottling (10YR 6/6) 	6/4) with <10%	- 423	2	3 5	18/18		CL	Bottom Cap	
	- light olive brown <shelby 1<br="" @="" sample="" st164-12="" tube="">grain size analysis: 7.2% Sand, 62.2% Silt, 30.6% Clay</shelby>	0-12'>	- 422	3		23/24		CL	-Seal Bentonite Chips	
- - 12-	END BOREHOLE AT 10.3 FEET BLS END Split-Spoon Sampling at 12 feet BL	5	- 421							

- 420

11-08-2013 C:\Consulting AlPower Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC164.BOR